
会员
AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型
更新时间:2024-08-22 11:17:20 最新章节:封底
书籍简介
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。通过阅读本书,您将学习如下内容:(1)AIGC技术基础深入了解神经网络的基础知识,包括卷积神经网络和循环神经网络的原理与应用。并通过学习神经网络的优化方法,您将掌握如何优化和提升神经网络的性能。(2)图像生成模型包括从自动编码器(AE)、变分自编码器(VAE)、生成对抗网络(GAN)等图像生成模型。通过学习优化方法,如WGAN、WGAN-WP、StyleGAN等,您将掌握如何提高图像生成模型的质量和稳定性。同时,了解图像生成模型的应用,如迁移学习、风格迁移等,让您轻松实现个性化创作。此外,还将带您深入了解DDPM、DDIM等扩散模型的前沿技术,为您展现图像生成技术的最新成果,探索更加出色的生成效果和表达方式。(3)语言生成模型了解注意力机制、Transformer架构等基础知识,深入探索GAT系列、大语言模型(如ChatGPT),让您掌握自然语言处理的精髓。(4)多模态模型了解CLIP、StableDiffusion、DALL.E等多模态模型,触碰视觉和文字的奇妙交织,领略多模态智能的广阔前景。
品牌:机械工业出版社
上架时间:2024-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
最新上架
- 会员本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字
- 会员本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字
- 会员本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。计算机19.1万字
- 会员本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字
- 会员ChatGPT作为人工智能领域的一大进步,引起了热议,其强大功能的背后离不开大模型的支持。大模型指的是参数规模超过千万的机器学习模型,主要应用于语音识别、计算机视觉等领域。本书聚焦大模型,对大模型的技术场景和商业应用展开详细叙述。本书主要从典型应用ChatGPT入手,探寻其背后支撑大模型的魅力。首先,本书对大模型的基础概念、产业格局、带来的新型商业模式进行讲解,展现了大模型的发展现状和商业化潜力。计算机13.2万字
- 会员本书理论联系实际,全面地介绍ChatGPT的主要应用场景,帮助读者掌握ChatGPT的使用方法和技巧。本书不仅讲述了ChatGPT在学习、写作、工作、生活方面的应用案例,还介绍了一个打造个人品牌的综合应用,内容实用,可操作性强。本书适合希望了解ChatGPT的初学者阅读。计算机9.6万字
- 会员本书是一本全面介绍机器学习方法特别是算法的新书,适合初学者和有一定基础的读者。机器学习可以分成三大类别,监督式学习、非监督式学习和强化学习。三大类别背后的算法也各有不同。监督式学习使用了数学分析中函数逼近方法、概率统计中的极大似然方法。非监督式学习使用了聚类和贝叶斯算法。强化学习使用了马尔可夫决策过程算法。机器学习背后的数学部分来自概率、统计、数学分析以及线性代数等领域。虽然用到的数学较多,但是最计算机7.4万字